ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи С помощью волшебного банкомата можно поменять любую купюру на любое конечное число купюр меньшего достоинства. Получив 1000 франков одной бумажкой, сможете ли Вы каждый месяц платить квартплату? (Дело происходит в Швейцарии, где квартплата постоянна, а жизнь бесконечна.) В некотором государстве система авиалиний устроена таким образом, что каждый город соединен авиалиниями не более чем с тремя другими, и из каждого города можно попасть в любой другой, сделав не более одной пересадки. Какое наибольшее количество городов может быть в этом государстве?
На биссектрисе AL треугольника ABC , в котором AL=AC ,
выбрана точка K таким образом, что CK=BL . Докажите,
что По кругу расставлены цифры 1, 2, 3,..., 9 в произвольном порядке. Каждые три цифры, стоящие подряд по часовой стрелке, образуют трёхзначное число. Найдите сумму всех девяти таких чисел. Зависит ли она от порядка, в котором записаны цифры?
В треугольнике ABC известно, что AB = BC,
M – произвольная точка на стороне AC треугольника ABC . Доказать, что отношение радиусов окружностей, описанных около треугольников ABM и BCM , не зависит от выбора точки M на стороне AC . На доске были написаны 10 последовательных натуральных чисел. Когда стёрли
одно из них, то сумма девяти оставшихся оказалась равна 2002. Точки A1, B1, C1 выбраны на сторонах BC, CA и AB треугольника ABC соответственно. Оказалось, что AB1 – AC1 = CA1 – CB1 = BC1 – BA1. Пусть OA, OB и OC – центры описанных окружностей треугольников AB1C1, A1BC1 и A1B1C. Докажите, что центр вписанной окружности треугольника OAOBOC совпадает с центром вписанной окружности треугольника ABC. Может ли горящая в комнате свеча не освещать полностью ни одну из её стен, если в комнате а) 10 стен, б) 6 стен?
По кругу выписаны в некотором порядке все натуральные числа от 1 до N ,
N Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.
|
Задача 103874
УсловиеАйрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.
ПодсказкаЕсли наименьшее из покрашенных чисел двузначное, то первый из непокрашенных участков состоит из 9 + 2n, т. е. из нечётного числа цифр.
РешениеВсего выписано Допустим, число 1 не покрашено. Если наименьшее из покрашенных чисел двузначное, то первый из непокрашенных участков состоит из нечётного числа цифр, а все остальные — из чётного числа цифр. Если же наименьшее из покрашенных чисел однозначное, то первый из непокрашенных участков состоит не более чем из 8 цифр. Но это слишком мало: покрашенных цифр в этом случае не более 5, непокрашенных — не более 8 . 4 = 32, итого — не более 37 цифр, а даже самый короткий месяц (февраль невисокосного года) даёт 47 цифр. В обоих случаях получили противоречие. Значит, число 1 должно быть покрашено.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке