ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет ещё одну карту, и так сколько угодно раз, пока сам не скажет "стоп". Может ли Фукс добиться того, чтобы после "стопа" каждая карта наверняка оказалась не там, где была вначале? Двое игроков по очереди выставляют на доску 65×65 по одной шашке. При этом ни в одной линии (горизонтали или вертикали) не должно быть больше двух шашек. Кто не может сделать ход – проиграл. Кто выигрывает при правильной игре? Назовём натуральное число хорошим, если все его цифры ненулевые. Хорошее число назовём особым, если в нём хотя бы k разрядов и цифры идут в порядке строгого возрастания (слева направо). Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27? Дан четырёхугольник ABCD. Его противоположные стороны AB и CD пересекаются в точке K. Его диагонали пересекаются в точке L. Известно, что прямая KL проходит через центр тяжести вершин четырёхугольника ABCD. Докажите, что ABCD – трапеция. В остроугольном треугольнике ABC на высоте BH выбрана произвольная точка P. Точки A' и C' – середины сторон BC и AB соответственно. Перпендикуляр, опущенный из A' на CP, пересекается с перпендикуляром, опущенным из C' на AP, в точке K. Докажите, что точка K равноудалена от точек A и C. На плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что |
Задача 103933
УсловиеНа плоскости даны два отрезка A1B1 и A2B2, причём A2B2/A1B1 = k < 1. На отрезке A1A2 взята точка A3, а на продолжении этого отрезка за точку А2 – точка А4 так, что A3А2/А3А1 = А4А2/А4А1 = k. Аналогично на отрезке В1В2 берётся точка В3, а на продолжении этого отрезка за точку В2 – точка В4 так, что Решение 1 Пусть O – центр не сохраняющего ориентацию подобия, переводящего A1 в A2 и B1 в B2. Так как треугольники OA1B1 и OA2B2 подобны, Решение 2 Пусть Решение 3 Построим параллелограмм A1A2B2X и проведём биссектрису A1Y треугольника A1XB1 (рис. справа). Так как B1Y/XY = A1B1/A1X = k, то B3Y || B2X и Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке