Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?

Вниз   Решение


Автор: Ивлев Ф.

Дан параллелограмм ABCD с тупым углом A. Точка H – основание перпендикуляра, опущенного из точки A на BC. Продолжение медианы CM треугольника ABC пересекает описанную около него окружность в точке K. Докажите, что точки K, H, C и D лежат на одной окружности.

ВверхВниз   Решение


Предложите способ измерения диагонали обычного кирпича, который легко реализуется на практике (без теоремы Пифагора).

ВверхВниз   Решение


Автор: Нилов Ф.

Дана четырёхугольная пирамида, в которую можно вписать сферу. Точку касания этой сферы с основанием пирамиды спроектировали на рёбра основания. Докажите, что все проекции лежат на одной окружности.

ВверхВниз   Решение


В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.

Вверх   Решение

Задача 105079
Темы:    [ Разбиения на пары и группы; биекции ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

В строку выписано 23 натуральных числа (не обязательно различных). Докажите, что между ними можно так расставить скобки, знаки сложения и умножения, что значение полученного выражения будет делиться на 2000 нацело.


Решение

  Разобьём данные 23 числа на восемь групп из стоящих подряд чисел: три группы по пять чисел и четыре группы по два числа. Каждую группу заключим в скобки, а между группами расставим знаки умножения. Если расставить знаки внутри каждой группы так, чтобы результат операций в группе из двух чисел делился на 2, а в группе из пяти чисел – на 5, то всё выражение будет делиться на  24·5³ = 2000.
  Покажем, что такая расстановка знаков в группах существует. Если числа в группе из двух чисел разной чётности, то между ними нужно поставить знак умножения, если одинаковой чётности – сложения. Результат, очевидно, будет чётен.
  Рассмотрим группу из чисел a1, a2, a3, a4, a5, идущих именно в таком порядке. Согласно решению задачи 103964 среди них найдётся насколько идущих подряд, сумма которых делится на 5. Расставим знаки сложения между числами, входящими в эту сумму  ai + ... + aj,  саму сумму (если требуется) заключим в скобки, а все оставшиеся промежутки между числами группы заполним знаками умножения.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 63
Год 2000
вариант
Класс 9
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .