Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Вниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

ВверхВниз   Решение


Один из углов треугольника на 120° больше другого.
Докажите, что биссектриса треугольника, проведённая из вершины третьего угла, вдвое длиннее, чем высота, проведённая из той же вершины.

ВверхВниз   Решение


В стране Полосатии произошёл переворот и новый лидер приказал перекроить старый флаг на новый (см. рисунки). Как выполнить такой приказ, если разрешается разрезать старый флаг ровно на четыре части?

ВверхВниз   Решение


У Васи есть 100 банковских карточек. Вася знает, что на одной из карточек лежит 1 рубль, на другой – 2 рубля, и так далее, на последней – 100 рублей, но не знает, на какой из карточек сколько денег. Вася может вставить карточку в банкомат и запросить некоторую сумму. Банкомат выдает требуемую сумму, если она на карточке есть, не выдает ничего, если таких денег на карточке нет, а карточку съедает в любом случае. При этом банкомат не показывает, сколько денег было на карточке. Какую наибольшую сумму Вася может гарантированно получить?

ВверхВниз   Решение


На вопрос о возрасте его детей математик ответил:
– У нас с женой трое детей. Когда родился наш первенец, суммарный возраст членов семьи был равен 45 годам, год назад, когда родился третий ребёнок – 70 годам, а сейчас суммарный возраст детей – 14 лет.
Сколько лет каждому ребенку, если известно, что у всех членов семьи дни рождения в один и тот же день?

ВверхВниз   Решение


Найдите свободный член многочлена P(x) с целыми коэффициентами, если известно, что он по модулю меньше тысячи, и  P(19) = P(94) = 1994.

ВверхВниз   Решение


Окружность с центром на диагонали AC трапеции ABCD ( BC || AD ) проходит через вершины A и B , касается стороны CD в точке C и пересекает основание AD в точке E . Найдите площадь трапеции ABCD , если AB=5 , CD=10 .

ВверхВниз   Решение


Найдите все такие числа a, что для любого натурального n число  an(n + 2)(n + 3)(n + 4)  будет целым.

ВверхВниз   Решение


Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?

Вверх   Решение

Задача 105115
Темы:    [ Геометрическая прогрессия ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Дана геометрическая прогрессия. Известно, что её первый, десятый и тридцатый члены являются натуральными числами.
Верно ли, что её двадцатый член также является натуральным числом?


Решение

  Пусть a1, a2, ..., an, ... – данная геометрическая прогрессия, q – её знаменатель. По условию a1,  a10 = a1q9  и  a30 = a1q29  – натуральные числа. Поэтому q9 и q29 – положительные рациональные числа. Отсюда следует, что  q² = q29(q9)–3 – положительное рациональное число и  q = q9(q²)–4  также положительное рациональное число.
  Пусть  q = m/n,  где m и n – натуральные взаимно простые числа. Число  a30 = a1m29n–29  натуральное, m29 и n29 взаимно просты, следовательно, a1 делится на n29. Отсюда получаем, что  a20 = a1q19 = a1m19n–19  – число натуральное.


Ответ

Верно.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 64
Год 2001
вариант
Класс 11
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .