|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть A , B , C и D – четыре точки в пространстве. Докажите, что если AB = BC и CD = DA , то прямые AC и BD перпендикулярны. Пусть A – некоторая точка пространства, B – ортогональная проекция точки A на плоскость α , l – некоторая прямая этой плоскости. Докажите, что ортогональные проекции точек A и B на эту прямую совпадают. Точка M находится на расстоянии a от плоскости α и на расстоянии b от некоторой прямой m этой плоскости. Пусть M1 – ортогональная проекция точки M на плоскость α . Найдите расстояние от точки M1 до прямой m . В пирамиде ABCD даны рёбра: AB = 7 , BC = 8 , CD = 4 . Найдите ребро DA , если известно, что прямые AC и BD перпендикулярны. |
Задача 105141
УсловиеВ возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих. Решение Пусть n > 2000, Sn = a1 + ... + an – сумма n первых членов и dnan+1 = Sn. Тогда dn+1an+2 = Sn+1 = Sn + an+1 = (dn + 1)an+1. Так как an+2 > an+1, то Замечаниябаллы: 8-9 кл. – 7, 10-11 кл. – 5 Источники и прецеденты использования
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|