Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Сонкин М.

Точки O1 и O2 – центры описанной и вписанной окружностей равнобедренного треугольника ABC  (AB = BC).  Описанные окружности треугольников ABC и O1O2A, пересекаются в точках A и D. Докажите, что прямая BD касается описанной окружности треугольника O1O2A.

Вниз   Решение


На большей стороне AC треугольника ABC взята точка N так, что серединные перпендикуляры к отрезкам AN и NC пересекают стороны AB и BC в точках K и M соответственно. Докажите, что центр O описанной окружности треугольника ABC лежит на описанной окружности треугольника KBM.

ВверхВниз   Решение


В первый день Маша собрала на 25% грибов меньше, чем Вася, а во второй – на 20% больше, чем Вася. За два дня Маша собрала грибов на 10% больше, чем Вася. Какое наименьшее количество грибов они могли собрать вместе?

ВверхВниз   Решение


Автор: Сонкин М.

Окружность, вписанная в четырёхугольник ABCD , касается его сторон DA , AB , BC и CD в точках K , L , M и N соответственно. Пусть S1 , S2 , S3 и S4 – окружности, вписанные в треугольники AKL , BLM , CMN и DNK соответственно. К окружностям S1 и S2 , S2 и S3 , S3 и S4 , S4 и S1 проведены общие касательные, отличные от сторон четырёхугольника ABCD . Докажите, что четырёхугольник, образованный этими четырьмя касательными, – ромб.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если  AB = DE,  то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.

ВверхВниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов.

ВверхВниз   Решение


Автор: Сонкин М.

Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.

ВверхВниз   Решение


На сторонах AB и BC треугольника ABC отмечены точки D и F соответственно, E — середина отрезка DF . Докажите, что AD+FC AE+EC .

ВверхВниз   Решение


На сторонах AB, BC, CA треугольника ABC выбраны точки P, Q, R соответственно таким образом, что  AP = CQ  и четырёхугольник RPBQ– вписанный. Касательные к описанной окружности треугольника ABC в точках A и C пересекают прямые RP и RQ в точках X и Y соответственно. Докажите, что  RX = RY.

ВверхВниз   Решение


Точки K , L , M и N — середины сторон соответственно AB , BC , CD и AD параллелограмма ABCD площади s . Найдите площадь четырёхугольника, образованного пересечением прямых AL , AM , CK и CN .

ВверхВниз   Решение


Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что  L1P = L2Q.

ВверхВниз   Решение


Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?

Вверх   Решение

Задача 105172
Темы:    [ Задачи на проценты и отношения ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Курс акций компании "Рога и копыта" каждый день в 12.00 повышается или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?


Решение

  Заметим, что при повышении курса акций он умножается на  1 + n/100,  а при понижении – на  1 – n/100.  Если курс повторился после k повышений и l понижений, то  (100 + n)k(100 – n)l = 100k+l.
  Так как правая часть чётна, то и левая часть должна быть чётна, значит, n чётно. По той же причине n кратно 5, то есть  n = 10m.  Подставив и сократив, получим  (10 + m)k(10 – m)l = 10k+l.  Аналогично докажем, что m кратно 10, поэтому n делится на 100. Противоречие.


Ответ

Не существует.

Замечания

Баллы: 8-9 кл.   5, 10-11 кл.   4

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант весенний тур, основной вариант, 10-11 класс
задача
Номер 1
олимпиада
Название Турнир городов
Турнир
Номер 25
Дата 2003/2004
вариант
Вариант весенний тур, основной вариант, 8-9 класс
задача
Номер 3
олимпиада
Название Московская математическая олимпиада
год
Номер 67
Год 2004
вариант
Класс 8
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .