Страница: 1
2 >> [Всего задач: 6]
Арифметическая прогрессия состоит из целых чисел, а её сумма – степень двойки.
Докажите, что количество членов прогрессии тоже степень двойки.
Задача
65164
(#2)
|
|
Сложность: 3+ Классы: 8,9
|
Какое максимальное число шашек можно расставить на доске 8×8 так, чтобы каждая была под боем?
|
|
Сложность: 3+ Классы: 7,8,9
|
Курс акций компании "Рога и копыта" каждый день в 12.00 повышается
или понижается на n%, где n – фиксированное натуральное число, меньшее 100 (курс не округляется). Существует ли n, для которого курс акций может дважды принять одно и то же значение?
Задача
65165
(#4)
|
|
Сложность: 4- Классы: 8,9
|
Две окружности пересекаются в точках A и B. Их общая касательная (та, которая ближе к точке B) касается окружностей в точках E и F. Прямая AB пересекает прямую EF в точке M. На продолжении AM за точку M выбрана точка K так, что KM = MA. Прямая KE вторично пересекает окружность, содержащую точку E, в точке C. Прямая KF вторично пересекает окружность, содержащую точку F, в точке D. Докажите, что точки C, D и A лежат на одной прямой.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Бильярдный стол имеет форму многоугольника (не обязательно
выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины
этого многоугольника – лузы, при попадании в которые шар там и остаётся.
Из вершины A с (внутренним) углом 90° выпущен шар, который
отражается от бортов (сторон многоугольника) по закону "угол падения равен углу
отражения". Докажите, что он никогда не вернётся в вершину A.
Страница: 1
2 >> [Всего задач: 6]