ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что из произвольного множества трёхзначных чисел, включающего не менее четырёх чисел, взаимно простых в совокупности, можно выбрать четыре числа, также взаимно простых в совокупности. а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей? б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно? Дан куб со стороной 4. Можно ли целиком оклеить три его грани, имеющие общую вершину, 16 бумажными прямоугольными полосками размером 1×3? В остроугольном треугольнике ABC через центр O описанной окружности и вершины B и C проведена окружность S. Пусть OK – диаметр окружности S, D и E – соответственно точки её пересечения с прямыми AB и AC. Докажите, что ADKE – параллелограмм. Дан биллиард в форме правильного 1998-угольника A1A2...A1998. Из середины стороны A1A2 выпустили шар, который, отразившись последовательно от сторон A2A3, A3A4, ..., A1998A1 (по закону "угол падения равен углу отражения"), вернулся в исходную точку. Докажите, что траектория шара – правильный 1998-угольник. В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB. В последовательности натуральных чисел {an}, n = 1, 2, ..., каждое натуральное число встречается хотя бы один раз, и для любых различных n и m выполнено неравенство Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.). Корни двух приведённых квадратных трёхчленов – отрицательные целые числа, причём один из этих корней – общий. Найдите объём тетраэдра ABCD с рёбрами AB=3 , AC=5 и BD = 7 , если расстояние между серединами M и N его рёбер AB и CD равно 2, а прямая AB образует равные углы с прямыми AC , BD и MN . Все имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке. |
Задача 105220
УсловиеВсе имеющиеся на складе конфеты разных сортов разложены по n коробкам, на которые установлены цены в 1, 2, ..., n у. е. соответственно. Требуется купить такие k из этих коробок наименьшей суммарной стоимости, которые содержат заведомо не менее k/n массы всех конфет. Известно, что масса конфет в каждой коробке не превосходит массы конфет в любой более дорогой коробке. Решение Пусть a1 ≤ a2 ≤ ... ≤ an – массы конфет в коробках стоимостью в 1, 2, ..., n у. е. соответственно, а n1 < n2 < ... < nk – номера тех коробок, которые нужно купить. б) Положим n0 = m0 = a0 = 0 и возьмём целые числа nj = mj + εj, где 0 ≤ ε < 1. Рассмотрим ступенчатую функцию, задаваемую равенствами f(x) = aj при j – 1 < x ≤ j. Поскольку функция не убывает, её среднее значение на промежутке уменьшается, когда оба конца промежутка сдвигают влево (даже с изменением длины промежутка). (Среднее значение – это площадь под графиком функции на заданном промежутке, деленная на длину этого промежутка.) В частности, ОтветКоробки стоимостью а) 4, 7 и 10 у. е.; б) Замечания Задача восходит к телевизионной игре "Сто к одному", где на
заключительном этапе двум игрокам задают по пять вопросов. На каждый из них заготовлено по пять наиболее популярных (по результатам опроса) ответов, суммарная стоимость которых составляет 100 очков. Ни сами эти ответы,
ни тем более их стоимости, соответствующие их популярности, игрокам не известны. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке