ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найти геометрическое место центров вписанных в треугольник ABC прямоугольников (одна сторона прямоугольника лежит на AB).
Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?
Во вписанном четырёхугольнике ABCD длины сторон BC и CD равны. Докажите, что площадь этого четырёхугольника равна ½ AC² sin∠A.
{a1, a2, ..., a20} — набор целых положительных чисел.
Разрежем на четыре части. Разрежьте каждую из фигур на четыре равные части (резать можно по сторонам и диагоналям клеток). На клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
|
Задача 107673
УсловиеНа клетчатой бумаге нарисована фигура (см. рис. 1): в верхнем ряду — одна клеточка, во втором сверху — три клеточки, в следующем ряду — 5 клеточек, и т.д., всего рядов — n. Докажите, что общее число клеточек есть квадрат некоторого числа.
РешениеНа рисунке 2 показано, как фигуру, данную в условии задачи, разрезать на две части (квадраты в одной из частей перечёркнуты) и из этих частей сложить квадрат. Количество клеточек в квадрате, нарисованном на клетчатой бумаге, очевидно, равно квадрату количества клеток, расположенных вдоль его стороны.
Таким образом, мы не только показали, что количество клеточек равно квадрату некоторого числа (что требовалось в условии задачи), но и нашли это число (n), то есть показали, что 1 + 3 + 5 + 7 + ... + (2n – 1) = n2 (n > 0). Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке