Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Прямая, параллельная стороне AB треугольника ABC, пересекает сторону BC в точке M, а сторону AC – в точке N. Площадь треугольника MCN в два раза больше площади трапеции ABMN. Найдите  CM : MB.

Вниз   Решение


Существуют ли такие целые числа x, y и z, для которых выполняется равенство:  (x – y)³ + (y – z)³ + (z – x)³ = 2011?

ВверхВниз   Решение


У двух человек было два квадратных торта. Каждый сделал на своем торте по 2 прямолинейных разреза от края до края. При этом у одного получилось три куска, а у другого — четыре. Как это могло быть?

ВверхВниз   Решение


Чему равна сумма цифр всех чисел от единицы до миллиарда?

ВверхВниз   Решение


Имеется 10 отрезков, причём известно, что длина каждого – целое число сантиметров. Два самых коротких отрезка – по сантиметру, самый длинный – 50 см. Докажите, что среди отрезков найдутся три, из которых можно составить треугольник.

ВверхВниз   Решение


Даны прямая и точка вне неё. Как с помощью циркуля и линейки построить прямую, параллельную данной прямой и проходящую через данную точку, проведя при этом возможно меньшее число линий (окружностей и прямых), так что последняя проведённая линия — это искомая прямая? Какого числа линий Вам удалось добиться?

ВверхВниз   Решение


Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

Вверх   Решение

Задача 107699
Темы:    [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Петя купил "Конструктор", в котором было 100 палочек разной длины. В инструкции к "Конструктору" написано, что из любых трёх палочек "Конструктора" можно составить треугольник. Петя решил проверить это утверждение, составляя из палочек треугольники. Палочки лежат в конструкторе по возрастанию длин. Какое наименьшее число проверок (в самом плохом случае) надо сделать Пете, чтобы доказать или опровергнуть утверждение инструкции?

Решение

Пете достаточно проверить, можно ли составить треугольник из двух самых коротких палочек и одной самой длинной. Если треугольник не составляется, то утверждение инструкции опровергнуто. Если же треугольник составить можно, то сумма длин двух самых коротких палочек больше длины самой длинной. Но в этом случае сумма длин двух любых палочек набора длиннее любой другой. (Действительно, сумма длин двух любых не меньше суммы длин самых коротких, а длина любой палочки не больше длины самой длинной.) А это и означает, что из любых палочек можно составить треугольник, т. е. утверждение инструкции доказано.

Ответ

Одна проверка.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2000
Название конкурс по математике
Задача
Номер 2
web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .