ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Из точки M внутри четырёхугольника ABCD опущены перпендикуляры на стороны. Основания перпендикуляров лежат внутри сторон. Обозначим эти основания: то, которое лежит на стороне AB — через X, лежащее на стороне BC — через Y, лежащее на стороне CD — через Z, лежащее на стороне DA — через T. Известно, что AX ≥ XB, BY ≥ YC, CZ ≥ ZD, DT ≥ TA. Докажите, что вокруг четырёхугольника ABCD можно описать окружность. Основание пирамиды – квадрат. Высота пирамиды пересекает диагональ основания. Найдите наибольший объём такой пирамиды, если периметр диагонального сечения, содержащего высоту пирамиды, равен 5. Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера. |
Задача 107751
Условие
Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает
в точку, симметричную ему относительно другого кузнечика. Докажите, что
кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего
размера.
Решение
1o. Представим себе, что квадрат, в вершинах которого сидят кузнечики — это
квадрат клетчатой бумаги
2o. Предположим, что кузнечики сумели попасть в вершины большего квадрата, тогда, прыгая в обратном порядке, они должны попасть в вершины меньшего. Но, начиная прыгать из вершин большего квадрата, они всегда будут попадать в узлы сетки, состоящей из больших квадратов. Иначе говоря, расстояние между ними не может быть меньше, чем сторона большого квадрата. Противоречие. Комментарий. Если сначала кузнечики находились в вершинах произвольного параллелограмма, то они всегда будут прыгать по сетке из таких же параллелограммов.
Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке