ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 107748

Тема:   [ Задачи на смеси и концентрации ]
Сложность: 2+
Классы: 7,8,9

Кооператив получает яблочный и виноградный сок в одинаковых бидонах и выпускает яблочно-виноградный напиток в одинаковых банках. Одного бидона яблочного сока хватает ровно на 6 банок напитка, а одного бидона виноградного – ровно на 10. Когда рецептуру напитка изменили, одного бидона яблочного сока стало хватать ровно на 5 банок напитка. На сколько банок напитка хватит теперь одного бидона виноградного сока? (Напиток водой не разбавляется.)

Прислать комментарий     Решение

Задача 107749

Темы:   [ Десятичная система счисления ]
[ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Ученик не заметил знак умножения между двумя трёхзначными числами и написал одно шестизначное число, которое оказалось в семь раз больше их произведения. Найдите эти числа.

Прислать комментарий     Решение

Задача 108197

Темы:   [ Биссектриса угла (ГМТ) ]
[ Средняя линия треугольника ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC провели биссектрисы углов A и C. Точки P и Q – основания перпендикуляров, опущенных из вершины B на эти биссектрисы. Докажите, что отрезок PQ параллелен стороне AC.

Прислать комментарий     Решение

Задача 107751

Темы:   [ Геометрия на клетчатой бумаге ]
[ Свойства симметрии и центра симметрии ]
[ Обратный ход ]
Сложность: 4-
Классы: 7,8,9

Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Прислать комментарий     Решение


Задача 107753

Темы:   [ Симметричная стратегия ]
[ Раскраски ]
Сложность: 4-
Классы: 7,8,9

Двое играют на доске 19×94 клеток. Каждый по очереди отмечает квадрат по линиям сетки (любого возможного размера) и закрашивает его. Выигрывает тот, кто закрасит последнюю клетку. Дважды закрашивать клетки нельзя. Кто выиграет при правильной игре и как надо играть?
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .