ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 107777
Темы:    [ Правильные многоугольники ]
[ Шестиугольники ]
[ Вспомогательные равные треугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).


Решение

См. задачу 98248.


Ответ

240°.

Замечания

Ср. с задачей 108113.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 58
Год 1995
вариант
Класс 8
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .