ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 108113
Темы:    [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 4-
Классы: 8,9
В корзину
Прислать комментарий

Условие

Прямая отсекает от правильного 10-угольника ABCDEFGHIJ со стороной 1 треугольник PAQ, в котором  PA + AQ = 1.
Найдите сумму углов, под которыми виден отрезок PQ из вершин B, C, D, E, F, G, H, I, J.


Подсказка

Правильный десятиугольник переходит в себя при повороте вокруг его центра на любой угол, кратный π/5.


Решение

См. задачу 98248.


Ответ

/5.

Замечания

1. 4 балла.

2. Ср. с задачей 107777.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6463
олимпиада
Название Турнир городов
Турнир
Номер 16
Дата 1994/1995
вариант
Вариант весенний тур, основной вариант, 8-9 класс
Задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .