ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дима пишет подряд натуральные числа: 123456789101112... . Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было? Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали? На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.) |
Задача 107783
УсловиеНа плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.) Решение Ломаная разбивает плоскость на части. Как известно, эти части можно покрасить в чёрный и белый цвета так, чтобы части одинакового цвета не имели общих отрезков границы (см. решение задачи 97794). Пусть бесконечная часть белая. Расставим на сторонах частей стрелки так, чтобы все чёрные части обходились против часовой стрелки. Выберем произвольную точку O, не лежащую ни на звеньях ломаной, ни на их продолжениях. Для каждой ориентированной стороны AB сосчитаем ориентированную площадь треугольника OAB и сложим все такие площади. Сумма по каждому чёрному многоугольнику даст его площадь, значит, общая сумма положительна. ОтветНе может. Замечания14 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке