ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||
Страница: 1 [Всего задач: 3]
На доске выписано (n – 1)n выражений: x1 – x2, x1 – x3, ..., x1 – xn, x2 – x1, x2 – x3, ..., x2 – xn, ..., xn – xn–1, где n ≥ 3. Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо (x1 – x2) +
(x2 – x3) Лёша запишет x1 – x3, а вместо (x1 – x2) + (x2 – x1) он запишет 0).
а) 99 попыток; б) 75 попыток; в) 74 попыток.
На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Страница: 1 [Всего задач: 3] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |