ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Лебедев А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 116219

Темы:   [ Разбиения на пары и группы; биекции ]
[ Ориентированные графы ]
[ Сочетания и размещения ]
[ Упорядочивание по возрастанию (убыванию) ]
Сложность: 4
Классы: 8,9,10

На доске выписано  (n – 1)n  выражений:   x1x2x1x3,  ...,  x1xnx2x1x2x3,  ...,  x2xn,  ...,  xnxn–1,   где  n ≥  3.  Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо  (x1x2) + (x2x3)  Лёша запишет  x1x3,  а вместо  (x1x2) + (x2x1)  он запишет 0).
Сколько выражений Лёша записал в тетрадь ровно по одному разу?

Прислать комментарий     Решение

Задача 66336

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Было 100 дверей, у каждой свой ключ (отпирающий только эту дверь). Двери пронумерованы числами 1, 2, ..., 100, ключи тоже, но, возможно, с ошибками: номер ключа совпадает с номером двери или отличается на 1. За одну попытку можно выбрать любой ключ, любую дверь и проверить, подходит ли этот ключ к этой двери. Можно ли гарантированно узнать, какой ключ какую дверь открывает, сделав не более
а) 99 попыток;
б) 75 попыток;
в) 74 попыток.
Прислать комментарий     Решение


Задача 107783

Темы:   [ Ломаные ]
[ Доказательство от противного ]
[ Шахматная раскраска ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 5
Классы: 9,10,11

На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .