Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Найдите все такие простые числа p, что число  p² + 11  имеет ровно шесть различных делителей (включая единицу и само число).

Вниз   Решение


Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

ВверхВниз   Решение


В пирамиде ABCD рёбра AD , BD и CD равны 5, расстояние от точки D до плоскости ABC равно 4. Найдите радиус окружности, описанной около треугольника ABC .

ВверхВниз   Решение


В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.

Вверх   Решение

Задача 108164
Темы:    [ Перегруппировка площадей ]
[ Вспомогательные подобные треугольники ]
[ Площадь параллелограмма ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В остроугольном треугольнике ABC провели высоты AD и CE. Построили квадрат ACPQ и прямоугольники CDMN и AEKL, у которых  AL = AB  и
CN = CB.  Докажите, что площадь квадрата ACPQ равна сумме площадей прямоугольников AEKL и CDMN.


Подсказка

Продолжите высоту BF до пересечения с PQ.


Решение

  Проведём третью высоту BF и продолжим её до пересечения с отрезком PQ в точке T. Прямоугольные треугольники ABF и ACE подобны, поэтому
AE : AC = AF : AB  ⇒  AE·AB = AF·AC  ⇒  SAEKL = AE·AL = AE·AB = AF·AC = AF·AQ = SAFTQ.
  Аналогично  SCDMN = SCFTP.  Следовательно,  SACPQ = SAFTQ + SCFTP = SAEKL + SCDMN.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6511
олимпиада
Название Московская математическая олимпиада
год
Номер 61
Год 1998
вариант
Класс 9
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .