Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Окружность с центром на стороне AC равнобедренного треугольника ABC  (AB = BC)  касается сторон AB и BC.
Найдите радиус окружности, если площадь треугольника ABC равна 25, а отношение высоты BD к стороне AC равно  3 : 8.

Вниз   Решение


Докажите, что если ортогональная проекция одной из вершин треугольной пирамиды на плоскость противоположной грани совпадает с точкой пересечения высот этой грани, то это же будет верно для любой другой вершины пирамиды.

ВверхВниз   Решение


Площадь прямоугольного треугольника равна r2 , где r – радиус окружности, касающейся одного катета и продолжений другого катета и гипотенузы. Найдите стороны треугольника.

ВверхВниз   Решение


Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

ВверхВниз   Решение


Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

ВверхВниз   Решение


Прямая l проходит через точку, лежащую на окружности с центром O и радиусом r . Известно, что ортогональной проекцией прямой l на плоскость окружности является прямая, касающаяся этой окружности. Найдите расстояние от точки O до прямой l .

ВверхВниз   Решение


Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.

Вверх   Решение

Задача 108737
Темы:    [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Решите задачу 3 для надписи A, BC, DEF, CGH, CBE, EKG.

Решение

Аналогично предыдущей задаче, посмотрим на первые два числа. Первое число однозначное, а второе — двузначное. Следовательно, их разность меньше 100. Следовательно, цифра, стоящая в разряде сотен, каждый раз увеличивается не более, чем на 1, откуда D = 1, C = 2, E = 3. Получаем запись: A, B2, 13F, 2GH, 2B3, 3KG. Аналогично предыдущей задаче, 3d = 2B3 - B2 = 201, d = 67. Дальше легко восстановить запись: 5, 72, 139, 206, 273, 340.

Ответ

5, 72, 139, 206, 273, 340.

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
год/номер
Номер 29
Дата 2006
задача
Номер 4

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .