ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что найдётся многоугольник, который можно разделить отрезком на две равные части так, что этот отрезок разделит одну из сторон многоугольника пополам, а другую – в отношении 1 : 2. б) Найдётся ли выпуклый многоугольник с таким свойством? В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что BM·CN > KM·KN. На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке. Существует ли непостоянный многочлен $P(x)$, который можно представить в виде суммы $a(x) + b(x)$, где $a(x)$ и $b(x)$ – квадраты многочленов с действительными коэффициентами, Дан треугольник и 10 прямых. Оказалось, что каждая прямая равноудалена от каких-то двух вершин треугольника. Все рёбра правильной четырёхугольной пирамиды равны a . Найдите высоту пирамиды. |
Задача 108805
Условие
Все рёбра правильной четырёхугольной пирамиды равны a . Найдите
высоту пирамиды.
Ответ
Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке