Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дима пишет подряд натуральные числа: 123456789101112... .
На каких местах, считая от начала, в первый раз будут стоять три цифры 5 подряд?

Вниз   Решение


Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

ВверхВниз   Решение


Имеются плашки (вырезанные из картона прямоугольники) размера 2×1. На каждой плашке нарисована одна диагональ. Есть плашки двух сортов, так как диагональ можно расположить двумя способами, причём плашек каждого сорта имеется достаточно много. Можно ли выбрать 18 плашек и сложить из них квадрат 6×6 так, чтобы концы диагоналей нигде не совпали?

ВверхВниз   Решение


На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)

ВверхВниз   Решение


На доске начерчен выпуклый четырёхугольник. Алёша утверждает, что его можно разрезать диагональю на два остроугольных треугольника. Боря – что можно на два прямоугольных, а Вася – что на два тупоугольных.
Оказалось, что ровно один из троих неправ. Про кого можно наверняка утверждать, что он прав?

ВверхВниз   Решение


Площадь трапеции, высота которой вчетверо меньше разности оснований, равна 17. Найдите произведение средней линии трапеции и отрезка, соединяющего середины её диагоналей.

ВверхВниз   Решение


На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.

ВверхВниз   Решение


Дана трапеция ABCD с основаниями  AD = 3  и  BC = 18.  Точка M расположена на диагонали AC, причём  AM : MC = 1 : 2.  Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN.

ВверхВниз   Решение


Вневписанная окружность треугольника ABC касается его стороны BC в точке K, а продолжения стороны AB – в точке L. Другая вневписанная окружность касается продолжений сторон AB и BC в точках M и N соответственно. Прямые KL и MN пересекаются в точке X. Докажите, что CX – биссектриса угла ACN.

ВверхВниз   Решение


В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Докажите, что углы DFE и CFE равны.

Вверх   Решение

Задача 108936
Темы:    [ Признаки подобия ]
[ Трапеции (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В трапеции ABCD с основаниями AD и BC угол при вершине A – прямой, E – точка пересечения диагоналей, F – проекция точки E на сторону AB .
Докажите, что углы DFE и CFE равны.


Решение

Из подобия треугольников BEC и DEA следует, что  BC : AD = BE : ED,  а из теоремы о пропорциональных отрезках –  BF : AF = BE : ED.  Поэтому
BC : AD = BF : AF.  Значит, прямоугольные треугольники CBF и DAF подобны по двум сторонам и углу между ними. Следовательно,
CFE = ∠BCF = ∠ADF = ∠DFE.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 6287

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .