Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Внутри круга расположены точки A1, A2, ..., An, а на его границе – точки B1, B2, ..., Bn так, что отрезки A1B1, A2B2, ..., AnBn не пересекаются. Кузнечик может перепрыгнуть из точки Ai в точку Aj, если отрезок AiAj не пересекается ни с одним из отрезков AkBk,  k ≠ i, j.
Докажите, что за несколько прыжков кузнечик сможет попасть из каждой точки Ap в любую точку Aq.

Вниз   Решение


Четырёхугольник ABCD — вписанный. Докажите, что

= .

ВверхВниз   Решение


Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что  BX = BY.

ВверхВниз   Решение


К двум непересекающимся окружностям ω1 и ω2 проведены три общие касательные – две внешние, a и b, и одна внутренняя, c. Прямые a, b и c касаются окружности ω1 в точках A1, B1 и C1 соответственно, а окружности ω2 – в точках A2, B2 и C2 соответственно. Докажите, что отношение площадей треугольников A1B1C1 и A2B2C2 равно отношению радиусов окружностей ω1 и ω2.

ВверхВниз   Решение


В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.

Вверх   Решение

Задача 109196
Темы:    [ Рациональные и иррациональные числа ]
[ Периодические и непериодические дроби ]
Сложность: 4-
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

В числе  a = 0,12457...  n-я цифра после запятой равна цифре слева от запятой в числе    Докажите, что α – иррациональное число.


Решение

Пусть это не так: 0,12457... – периодическая десятичная дробь с длиной периода m (и неким предпериодом). Тогда цифры, стоящие на местах с номерами m, 10m, 100m, ..., 10km, ..., совпадают (для номеров, больших длины предпериода). В то же время это последовательные цифры десятичного разложения иррационального числа    (то есть непериодической дроби). Противоречие.

Замечания

6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 28
Дата 2006/2007
вариант
Вариант осенний тур, основной вариант, 10-11 класс
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .