|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Окружности S1 и S2 с центрами O1 и O2 пересекаются в точках A и B . Окружность, проходящая через точки O1 , O2 и A , вторично пересекает окружность S1 в точке D , окружность S2 – в точке E , а прямую AB – в точке C . Докажите, что CD=CB=CE . Натуральные числа m и n таковы, что НОК(m, n) + НОД(m, n) = m + n. Докажите, что одно из чисел m или n делится на другое. Правильный шестиугольник со стороной 5 разбит прямыми, параллельными его сторонам, на правильные треугольники со стороной 1 (см. рис.). Назовём узлами вершины всех таких треугольников. Известно, что более половины узлов отмечено. Докажите, что найдутся пять отмеченных узлов, лежащих на одной окружности. Можно ли в таблице 11×11 расставить натуральные числа от 1 до 121 так, чтобы числа, отличающиеся друг от друга на единицу, располагались в клетках с общей стороной, а все точные квадраты попали в один столбец? Дана функция f(x)= |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36]
Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY.
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 36] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|