Страница: 1
2 3 4 5 6 7 >> [Всего задач: 33]
|
|
Сложность: 3 Классы: 8,9,10
|
Дан прямоугольный треугольник ABC. На катете AB во внешнюю сторону построен равносторонний треугольник ADB, а на гипотенузе AC во внутреннюю сторону – равносторонний треугольник AEC. Прямые DE и AB пересекаются в точке M. Весь чертёж стерли, оставив только точки A и B. Восстановите точку M.
|
|
Сложность: 3 Классы: 8,9,10,11
|
Дан треугольник ABC площади 1. Из вершины B опущен перпендикуляр BM на биссектрису угла C. Найдите площадь треугольника AMC.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан параллелограмм ABCD. Две окружности с центрами в вершинах A и C проходят через D. Прямая l проходит через D и вторично пересекает окружности в точках X, Y. Докажите, что BX = BY.
|
|
Сложность: 3+ Классы: 7,8,9
|
Дана окружность радиуса R. Две другие окружности, сумма радиусов которых также равна R, касаются её изнутри.
Докажите, что прямая, соединяющая точки касания, проходит через одну из общих точек этих окружностей.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дана окружность и точка К внутри неё. Произвольная окружность, равная данной и проходящая через точку К, имеет с данной окружностью общую хорду. Найдите геометрическое место середин этих хорд.
Страница: 1
2 3 4 5 6 7 >> [Всего задач: 33]