Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Чувилин К.

Дана таблица n×n, столбцы которой пронумерованы числами от 1 до n. В клетки таблицы расставляются числа 1, ..., n  так, что в каждой строке и в каждом столбце все числа различны. Назовём клетку хорошей, если число в ней больше номера столбца, в котором она находится. При каких n существует расстановка, в которой во всех строках одинаковое количество хороших клеток?

Вниз   Решение


На окружности расположена тысяча непересекающихся дуг, и на каждой из них написаны два натуральных числа. Сумма чисел каждой дуги делится на произведение чисел дуги, следующей за ней по часовой стрелке. Каково наибольшее возможное значение наибольшего из написанных чисел?

ВверхВниз   Решение


На столе стоят 2004 коробочки, в каждой из которых лежит по одному шарику. Известно, что некоторые из шариков – белые, и их количество четно. Разрешается указать на любые две коробочки и спросить, есть ли в них хотя бы один белый шарик. За какое наименьшее количество вопросов можно гарантированно определить какую-нибудь коробочку, в которой лежит белый шарик?

ВверхВниз   Решение


Числа a, b, c таковы, что  a²(b + c) = b²(a + c) = 2008  и  a ≠ b.  Найдите значение выражения  c²(a + b).

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Известно, что для любого вещественного x существует такое вещественное y, что   f(y) = f(x) + y.  Найдите наибольшее возможное значение a.

ВверхВниз   Решение


Участники шахматного турнира сыграли друг с другом по одной партии. Для каждого участника A было подсчитано число набранных им очков (за победу дается 1 очко, за ничью – ½ очка, за поражение – 0 очков) и коэффициент силы по формуле: сумма очков тех участников, у кого A выиграл, минус сумма очков тех, кому он проиграл.
  а) Могут ли коэффициенты силы всех участников быть больше 0?
  б) Могут ли коэффициенты силы всех участников быть меньше 0?

ВверхВниз   Решение


На клетчатой бумаге нарисован прямоугольник 5x9. В левом нижнем углу стоит фишка. Коля и Серёжа по очереди передвигают ее на любое количество клеток либо вправо, либо вверх. Первым ходит Коля. Выигрывает тот, кто поставит фишку в правый верхний. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Внутри параллелограмма ABCD выбрана точка O, причём  ∠OAD = ∠OCD.  Докажите, что  ∠OBC = ∠ODC.

ВверхВниз   Решение


Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).

Вверх   Решение

Задача 109688
Темы:    [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Выпуклые многоугольники ]
[ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 5+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Докажите, что три выпуклых многоугольника на плоскости нельзя пересечь одной прямой тогда и только тогда, когда каждый многоугольник можно отделить от двух других прямой (т.е. существует прямая такая, что этот многоугольник и два остальных лежат по ее разные стороны).

Решение

Пусть каждый из многоугольников A , B , C можно отделить от двух других. Докажем, что их нельзя пересечь одной прямой. Предположим противное: X , Y , Z – соответственно точки многоугольников A , B , C , лежащие на одной прямой. Тогда одна из точек, например Y , лежит на прямой между X и Z . Следовательно, B нельзя отделить от A и C , так как в противном случае точку Y , лежащую между двумя другими X и Z , нужно отделить от этих точек одной прямой, что невозможно.
В обратную сторону утверждение можно доказать двумя способами. Пусть многоугольники нельзя пересечь одной прямой.

  1. Рассмотрим треугольники с вершинами X A , Y B , Z C . Пусть из всех таких треугольников наименьшую высоту из вершины Y имеет треугольник X0Y0Z0 (кстати, почему треугольник с наименьшей высотой существует?). Тогда прямая, перпендикулярная высоте и проходящая через середину высоты, не пересекает многоугольники B , A и C , так как, в противном случае, существовал бы треугольник с меньшей высотой, выходящей из Y0 .
  2. Рассмотрим две внешние касательные к многоугольникам A и C . Тогда они не могут пересекать B . Если мы сдвинем немного ту, которая лежит ближе к B , в направлении к многоугольнику B , то получим прямую, отделяющую B от A и C .

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 1999
Этап
Вариант 5
Класс
Класс 11
задача
Номер 99.5.11.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .