ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть M – внутренняя точка прямоугольника ABCD, а S – его площадь. Докажите, что S ≤ AM·CM + BM·DM. В стране 1001 город, каждые два города соединены дорогой с односторонним движением. Из каждого города выходит ровно 500 дорог, в каждый город входит ровно 500 дорог. От страны отделилась независимая республика, в которую вошли 668 городов. Докажите, что из каждого города этой республики можно доехать до любого другого ее города, не выезжая за пределы республики. В выпуклом четырёхугольнике все стороны и все углы попарно различны. а) Сколько осей симметрии может иметь клетчатый многоугольник, то есть многоугольник, стороны которого лежат на линиях листа бумаги в клетку? б) Сколько осей симметрии может иметь клетчатый многогранник, то есть многогранник, составленный из одинаковых кубиков, примыкающих друг к другу гранями? Найдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n. |
Задача 109752
УсловиеНайдите все такие нечётные натуральные n > 1, что для любых взаимно простых делителей a и b числа n число a + b – 1 также является делителем n. Решение Пусть p – наименьший простой делитель числа n. Представим n в виде pmk, где k не делится на p. По условию число p + k – 1 является делителем n. Ответn – степень нечётного простого числа. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке