Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На плоскости отмечены все точки с целыми координатами  (x,y) такие, что x2+y2 1010 . Двое играют в игру (ходят по очереди). Первым ходом первый игрок ставит фишку в какую-то отмеченную точку и стирает ее. Затем каждым очередным ходом игрок переносит фишку в какую-то другую отмеченную точку и стирает ее. При этом длины ходов должны все время увеличиваться; кроме того, запрещено делать ход из точки в симметричную ей относительно центра. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу, как бы ни играл его соперник?

Вниз   Решение


Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?

ВверхВниз   Решение


Найдите все натуральные числа, имеющие ровно шесть делителей, сумма которых равна 3500.

ВверхВниз   Решение


На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.

Вверх   Решение

Задача 109765
Темы:    [ Три прямые, пересекающиеся в одной точке ]
[ Наименьшая или наибольшая площадь (объем) ]
[ Раскраски ]
Сложность: 5
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

На плоскости взято конечное число красных и синих прямых, среди которых нет параллельных, так, что через каждую точку пересечения одноцветных прямых проходит прямая другого цвета. Докажите, что все прямые проходят через одну точку.


Решение

  Предположим противное. Заметим, что через каждую точку пересечения двух прямых проходит красная прямая. Рассмотрим синюю прямую l; пусть A, B – две наиболее удалённые друг от друга точки пересечения l с красными прямыми, m и n – красные прямые, проходящие через A и B, C – точка пересечения m и n. Тогда через C проходит синяя прямая p, которая пересекает l в какой-то точке D отрезка AB, иначе A и B – не наиболее удалённые (рис. слева).

           
  Рассмотрим все четвёрки прямых l', m', n', p', расположенных как l, m, n, p (l', p' – одного цвета; m', n' – другого; m', n', p' пересекаются в одной точке; точка пересечения p' и l' лежит между точками пересечения l' с m' и n'), и рассмотрим среди них такую, в которой прямые l', m', n' образуют треугольник наименьшей площади (рис. справа). Тогда через точку D' проходит прямая q', одноцветная с m'. Она пересекает либо отрезок B'C', либо A'C' (пусть, для определенности, B'C'). Тогда прямые n', l', p', q' образуют конфигурацию с треугольником меньшей площади. Противоречие.

Замечания

Найти хотя бы одну пару прямых l, m, n, p можно бы было и по-другому: взять какую-нибудь четвёрку прямых l, m, n, p нужных цветов (так, чтобы m, n, p пересекались в одной точке) и проективным преобразованием добиться того, чтобы точка D пересечения p и l лежала между A и B.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2002
Этап
Вариант 5
Класс
Класс 10
задача
Номер 02.5.10.8
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2002
Этап
Вариант 5
Класс
Класс 11
задача
Номер 02.5.11.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .