ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром. Решите систему уравнений: Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN. Боковая грань образует с плоскостью основания правильной шестиугольной пирамиды угол 60o . Найдите угол бокового ребра с плоскостью основания.
Сторона основания правильной шестиугольной пирамиды равна
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? |
Задача 109816
Условие
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? РешениеПоложим f(x) = |x-a1|+...+|x-a50|-|x-b1|- .. -|x-b50| и перепишем
исходное уравнение в виде f(x) = 0 . Ответ49.00 Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке