Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В выборах в 100-местный парламент участвовали 12 партий. В парламент проходят партии, за которые проголосовало строго больше 5% избирателей. Между прошедшими в парламент партиями места распределяются пропорционально числу набранных ими голосов. После выборов оказалось, что каждый избиратель проголосовал ровно за одну из партий (недействительных бюллетеней, голосов "против всех" и т. п. не было) и каждая партия получила целое число мест. При этом Партия любителей математики набрала 25% голосов. Какое наибольшее число мест в парламенте она могла получить?

Вниз   Решение


Автор: Лифшиц Ю.

Дан треугольник ABC с попарно различными сторонами. На его сторонах построены внешним образом правильные треугольники ABC1, BCA1 и CAB1. Докажите, что треугольник A1B1C1 не может быть правильным.

ВверхВниз   Решение


Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.

Вверх   Решение

Задача 109850
Темы:    [ Шахматная раскраска ]
[ Ломаные ]
[ Ломаные внутри квадрата ]
[ Четность и нечетность ]
[ Свойства симметрий и осей симметрии ]
[ Таблицы и турниры (прочее) ]
Сложность: 4-
Классы: 7,8,9,10
Из корзины
Прислать комментарий

Условие

Дана доска 15×15. Некоторые пары центров соседних по стороне клеток соединили отрезками так, что получилась замкнутая несамопересекающаяся ломаная, симметричная относительно одной из диагоналей доски. Докажите, что длина ломаной не больше 200.


Решение

  Ясно, что ломаная пересекает диагональ. Пусть A – одна из вершин ломаной, лежащая на диагонали.
  Будем двигаться по ломаной, пока не попадём в первый раз снова в вершину B, лежащую на диагонали. Из симметрии, если двигаться по ломаной из A в другую сторону, то B также окажется первой вершиной на диагонали, в которую мы попадём. При этом ломаная уже замкнётся, поэтому через остальные 13 центров клеток на диагонали ломаная не проходит.
  Раскрасим доску в шахматном порядке так, чтобы диагональ была чёрной. Заметим, что на нашей ломаной белые и чёрные клетки чередуются, поэтому их количества равны.
  Всего на доске  (15² + 1) : 2 = 113  чёрных клеток. Поскольку клетки диагонали чёрные и ломаная не проходит через 13 из них, то она проходит не более чем через 100 чёрных клеток. Итого длина ломаной не более  2·100 = 200.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2006
Этап
Вариант 5
Класс
Класс 9
задача
Номер 06.5.9.1
олимпиада
Название Всероссийская олимпиада по математике
год
Год 2006
Этап
Вариант 5
Класс
Класс 10
задача
Номер 06.5.10.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .