Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Составьте уравнение окружности, проходящей через точки A(- 2;1), B(9;3) и C(1;7).

Вниз   Решение


На диагонали AC нижней грани единичного куба ABCDA1B1C1D1 отложен отрезок AE длины l . На диагонали B1D1 его верхней грани отложен отрезок B1F длиной ml . При каком l (и фиксированном m>0 ) длина отрезка EF будет наименьшей?

ВверхВниз   Решение


Автор: Фольклор

На сторонах АВ, ВС и АС равностороннего треугольника АВС выбраны точки K, M и N соответственно так, что угол MKB равен углу MNC, а угол KMB равен углу KNA. Докажите, что NB – биссектриса угла MNK.

ВверхВниз   Решение


Угол B при вершине равнобедренного треугольника ABC равен 120°. Из вершины B выпустили внутрь треугольника два луча под углом 60° друг к другу, которые, отразившись от основания AC в точках P и Q, попали на боковые стороны в точки M и N (см. рис.). Докажите, что площадь треугольника PBQ равна сумме площадей треугольников AMP и CNQ.

ВверхВниз   Решение


Найти все действительные решения уравнения x2+2x sin xy+1=0 .

ВверхВниз   Решение


Диагонали трёх различных граней прямоугольного параллелепипеда равны m , n и p . Найдите диагональ параллелепипеда.

Вверх   Решение

Задача 111128
Темы:    [ Прямоугольные параллелепипеды ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Диагонали трёх различных граней прямоугольного параллелепипеда равны m , n и p . Найдите диагональ параллелепипеда.

Решение

Пусть x , y и z – измерения данного прямоугольного параллелепипеда, а d – его диагональ. Тогда

x2 + y2 = m2, x2 + z2 = n2, y2 + z2 = p2.

Сложив почленно эти равенства, получим, что
2x2 + 2y2 + 2z2 = m2 + n2 + p2.

Следовательно,
d = = .


Ответ

.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8309

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .