Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 6 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.

Вниз   Решение


Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

ВверхВниз   Решение


Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

ВверхВниз   Решение


Рассматриваются такие квадратичные функции  f(x) = ax² + bx + c,  что  a < b  и  f(x) ≥ 0  для всех x.
Какое наименьшее значение может принимать выражение  a+b+c/b–a ?

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .

Вверх   Решение

Задача 111411
Темы:    [ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 8,9
Из корзины
Прислать комментарий

Условие

В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .

Ответ

R .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 4537

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .