ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Миша написал на доске в некотором порядке 2004 плюса и 2005 минусов. Время от времени Юра подходит к доске, стирает любые два знака и пишет вместо них один, причём если он стёр одинаковые знаки, то вместо них он пишет плюс, а если разные, то минус. После нескольких таких действий на доске остался только один знак. Какой? Две окружности w1 и w2 пересекаются в точках A и B. К ним через точку A проводятся касательные l1 и l2 (соответственно). Перпендикуляры, опущенные из точки B на l2 и l1, вторично пересекают окружности w1 и w2 соответственно в точках K и N. Докажите, что точки K, A и N лежат на одной прямой. Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть? Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD. Юра, Лёша и Миша коллекционируют марки. Количество Юриных марок, которых нет у Лёши, меньше, чем количество марок, которые есть и у Юры, и у Лёши. Точно так же, число Лёшиных марок, которых нет у Миши, меньше, чем число марок, которые есть и у Лёши и у Миши. А число Мишиных марок, которых нет у Юры, меньше, чем число марок, которые есть и у Юры и у Миши. Докажите, что какая-то марка есть у каждого из трех мальчиков. В городе Цветочном n площадей и m улиц (m ≥ n + 1). Каждая улица соединяет две площади и не проходит через другие площади. По существующей в городе традиции улица может называться либо Синей, либо Красной. Ежегодно в городе происходит переименование: выбирается площадь и переименовываются все выходящие из неё улицы. Докажите, что можно назвать улицы так, что переименованиями нельзя добиться одинаковых названий у всех улиц города. В окружности проведены две пересекающиеся хорды AB и CD . На отрезке AB взяли точку M так, что AM=AC , а на отрезке CD – точку N так, что DN=DB . Докажите, что если точки M и N не совпадают, то прямая MN параллельна прямой AD . Петя разрезал фигуру на две равные части, как
показано на рисунке. Придумайте, как разрезать эту фигуру на две равные
части другим способом.
|
Задача 111637
УсловиеПетя разрезал фигуру на две равные части, как
показано на рисунке. Придумайте, как разрезать эту фигуру на две равные
части другим способом.
Решение
Приведём ещё два возможных варианта разреза, кроме
приведённого в условии.
Замечание. Рассмотренная в задаче фигура является примером несимметричной фигуры (не имеющей ни центра, ни оси симметрии), которую можно разрезать на две равных фигуры тремя различными способами. Интересно было бы ответить на следующий вопрос: существует ли несимметричная фигура, которую можно разрезать на две равные четырьмя или большим числом способов? Если вам удастся придумать пример такой фигуры, напишите, пожалуйста, об этом жюри Турнира им. Ломоносова по адресу turlom@mccme.ru Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке