ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
При каких натуральных n для любых чисел α , β , γ ,
являющихся величинами углов остроугольного треугольника, справедливо неравенство
Докажите, что для всех x Пусть AD – биссектриса треугольника ABC и прямая l касается окружностей, описанных около треугольников ADB и ADC , в точках M и N соответственно. Докажите, что окружность, проходящая через середины отрезков BD , DC и MN касается прямой l . Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях. |
Задача 111801
УсловиеИмеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях. Решение Рассмотрим граф, вершинами которого являются бюрократы, причём два бюрократа из разных комиссий соединены красным ребром, если они знакомы, и синим – в противном случае. Пусть в трёх комиссиях a, b и c бюрократов. Рассмотрим произвольных бюрократов A, B из первых двух комиссий. Пусть они знакомы. Тогда существует ровно 10 треугольников ABC, в которых все ребра красные. Аналогично для незнакомых A и B найдутся ровно 10 треугольников ABC, в которых все рёбра синие. Значит, общее число одноцветных треугольников равно 10ab. Аналогично оно же равно 10ac и 10bc, поэтому a = b = c. Ответ120 бюрократов. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке