Страница: 1 2 >> [Всего задач: 8]
Задача
111794
(#08.4.11.1)
|
|
Сложность: 4- Классы: 9,10,11
|
Даны два квадратных трёхчлена, имеющих корни. Известно, что если в них поменять местами коэффициенты при x², то получатся трёхчлены, не имеющие корней. Докажите, что если в исходных трёхчленах поменять местами коэффициенты при x, то получатся трёхчлены, имеющие корни.
Задача
111795
(#08.4.11.2)
|
|
Сложность: 4- Классы: 8,9,10,11
|
По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.
Задача
111805
(#08.4.11.3)
|
|
Сложность: 4 Классы: 9,10,11
|
Последовательность (an) задана условиями a1= 1000000 , an+1=n[
]+n . Докажите, что в ней можно выделить бесконечную подпоследовательность, являющуюся арифметической прогрессией.
Задача
111797
(#08.4.11.4)
|
|
Сложность: 5- Классы: 9,10,11
|
Вписанная окружность σ треугольника ABC касается его сторон BC , AC , AB в точках A' , B' , C' соответственно. Точки K и L на окружности σ таковы, что
AKB'+
BKA'=
ALB'+
BLA'=180o . Докажите, что прямая KL равноудалена от точек A' , B' , C' .
Задача
111806
(#08.4.11.5)
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На острове живут 100 рыцарей и 100 лжецов, у каждого из них есть хотя бы один друг. Рыцари всегда говорят правду, а лжецы всегда лгут. Однажды утром каждый житель произнес либо фразу "Все мои друзья – рыцари", либо фразу "Все мои друзья – лжецы", причем каждую из фраз произнесло ровно 100 человек. Найдите наименьшее возможное число пар друзей, один из которых рыцарь, а другой – лжец.
Страница: 1 2 >> [Всего задач: 8]