Страница: 1
2 3 4 5 >> [Всего задач: 24]
Задача
111810
(#08.4.9.1)
|
|
Сложность: 3+ Классы: 7,8,9
|
Числа a, b, c таковы, что a²(b + c) = b²(a + c) = 2008 и a ≠ b. Найдите значение выражения c²(a + b).
Задача
111811
(#08.4.9.2)
|
|
Сложность: 4- Классы: 8,9,10
|
В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.
Задача
111812
(#08.4.9.3)
|
|
Сложность: 4- Классы: 9
|
Дан выпуклый шестиугольник P1P2P3P4P5P6, все стороны которого равны. Каждую его вершину отразили симметрично относительно прямой, проходящей через две соседние вершины. Полученные точки обозначили через Q1, Q2, Q3, Q4, Q5 и Q6 соответственно. Докажите, что треугольники Q1Q3Q5 и Q2Q4Q6 равны.
Задача
111813
(#08.4.9.4)
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны положительные рациональные числа a, b. Один из корней трёхчлена x² – ax + b – рациональное число, в несократимой записи имеющее вид m/n. Докажите, что знаменатель хотя бы одного из чисел a и b (в несократимой записи) не меньше n2/3.
Задача
111814
(#08.4.9.5)
|
|
Сложность: 4- Классы: 8,9
|
Дано натуральное число n > 1. Для каждого делителя d числа n + 1, Петя разделил число n на d с остатком и записал на доску неполное частное, а в тетрадь – остаток. Докажите, что наборы чисел на доске и в тетради совпадают.
Страница: 1
2 3 4 5 >> [Всего задач: 24]