Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

На плоскости расположено [ n] прямоугольников со сторонами, параллельными осям координат. Известно, что любой прямоугольник пересекается хотя бы с n прямоугольниками. Доказать, что найдется прямоугольник, пересекающийся со всеми прямоугольниками.

Вниз   Решение


В блицтурнире принимали участие  2n + 3  шахматиста. Каждый сыграл с каждым ровно по одному разу. Для турнира был составлен такой график, чтобы игры проводились одна за другой, и чтобы каждый игрок после сыгранной партии отдыхал не менее n игр. Докажите, что один из шахматистов, игравших в первой партии, играл и в последней.

ВверхВниз   Решение


Автор: Гарбер А.

Известно, что многочлен  (x + 1)n – 1  делится на некоторый многочлен  P(x) = xk + ck–1xk–1 + ck–2xk–2 + ... + c1x + c0  чётной степени k, у которого все коэффициенты – целые нечётные числа. Докажите, что n делится на  k + 1.

ВверхВниз   Решение


Имеется 8 монет, 7 из которых – настоящие, которые весят одинаково, и одна фальшивая, отличающаяся по весу от остальных. Чашечные весы без гирь таковы, что если положить на их чашки равные грузы, то любая из чашек может перевесить, если же грузы различны по массе, то обязательно перетягивает чашка с более тяжелым грузом. Как за четыре взвешивания наверняка определить фальшивую монету и установить, легче она или тяжелее остальных?

ВверхВниз   Решение


Треугольник T содержится внутри выпуклого центрально-симметричного многоугольника M . Треугольник T' получается из треугольника T центральной симметрией относительно некоторой точки P , лежащей внутри треугольника T . Докажите, что хотя бы одна из вершин треугольника T' лежит внутри или на границе многоугольника M .

ВверхВниз   Решение


Автор: Храбров А.

Существует ли такое натуральное число, что произведение всех его натуральных делителей (включая 1 и само число) оканчивается ровно на 2001 ноль?

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE сторона AB перпендикулярна стороне CD, а сторона BC – стороне DE.
Докажите, что если  AB = AE = ED = 1,  то  BC + CD  < 1.

ВверхВниз   Решение


Автор: Скробот Д.

Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.

Вверх   Решение

Задача 111809
Темы:    [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Автор: Скробот Д.

Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.


Решение

Пусть G – точка, симметричная точке A относительно прямой EP. Из симметрии  PF = PA = PG,  а также  FD = AD,  GE = AE.  Поскольку AD и AE – равные отрезки касательных,  FD = GE.  Далее,  ∠(, )  (угол от вектора до вектора , отсчитываемый против часовой стрелки) равен
ADE = 2∠BDP = ∠DPE + 2∠DEP  и аналогично  ∠(, ) = ∠AED + 2∠CEP = ∠DPE + 2∠EDP.  Значит,
∠(, ) = ∠(, ) + ∠(, ) = (∠DPE + 2∠EDP) + (∠DPE + 2∠DEP) = 2(∠DPE + ∠DEP + ∠EDP) = 360°,  то есть векторы и сонаправлены и равны. Следовательно, FDGE – параллелограмм. Точка M – середина диагонали DE, значит, она также является серединой диагонали FG. Следовательно, PM – медиана (а значит, и высота) равнобедренного треугольника FPG.

Источники и прецеденты использования

олимпиада
Название Всероссийская олимпиада по математике
год
Год 2008
Этап
Вариант 4
Класс
Класс 10
задача
Номер 08.4.10.8

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .