ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Скробот Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 4]      



Задача 64813

Темы:   [ Вспомогательные подобные треугольники ]
[ Точка Лемуана ]
[ Гомотетия помогает решить задачу ]
[ Радикальная ось ]
Сложность: 4
Классы: 9,10,11

Даны окружность, её хорда AB и середина W меньшей дуги AB. На большей дуге AB выбирается произвольная точка C. Касательная к окружности, проведённая из точки C, пересекает касательные, проведённые из точек A и B, в точках X и Y соответственно. Прямые WX и WY пересекают прямую AB в точках N и M соответственно. Докажите, что длина отрезка NM не зависит от выбора точки C.

Прислать комментарий     Решение

Задача 109853

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Гомотетичные окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Вспомогательные подобные треугольники ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 9,10,11

Автор: Скробот Д.

Дан треугольник ABC. Окружность ω касается описанной окружности Ω треугольника ABC в точке A, пересекает сторону AB в точке K, а также пересекает сторону BC. Касательная CL к окружности ω такова, что отрезок KL пересекает сторону BC в точке T. Докажите, что отрезок BT равен по длине касательной, проведённой из точки B к ω.

Прислать комментарий     Решение

Задача 111809

Темы:   [ Свойства симметрий и осей симметрии ]
[ Вписанные и описанные окружности ]
[ Угол между касательной и хордой ]
[ Две касательные, проведенные из одной точки ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 9,10

Автор: Скробот Д.

Вписанная в треугольник ABC окружность ω касается сторонAB и AC в точках D и E соответственно. Пусть P – произвольная точка на большей дуге DE окружности ω, F – точка, симметричная точке A относительно прямой DP, M – середина отрезка DE. Докажите, что угол FMP – прямой.

Прислать комментарий     Решение

Задача 64884

Темы:   [ Описанные четырехугольники ]
[ Три прямые, пересекающиеся в одной точке ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанные и описанные окружности ]
[ Инверсия помогает решить задачу ]
[ Вспомогательная окружность ]
[ Радикальная ось ]
Сложность: 5-
Классы: 10,11

В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .