ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Задача 111921
Условие
Стороны BC и AC треугольника ABC касаются
соответствующих вневписанных окружностей в точках A1 , B1 .
Пусть A2 , B2 — ортоцентры треугольников CAA1 и CBB1 .
Докажите, что прямая A2B2 перпендикулярна биссектрисе угла C .
Решение
Опустим из B и A1 высоты на AC соответственно в точки B3 и B4 , аналогично построим точки A3 и A4 (рис.). Заметим, что AB1=BA1=p-c , где p — полупериметр треугольника ABC . Таким образом, A3A4=B3B4=(p-c) cosγ . Отрезки A3A4 и B3B4 являются проекциями отрезка A2B2 на прямые AC и BC , но эти отрезки равны, поэтому отрезок A2B2 с ними составляет равные углы. Значит, он либо перпендикулярен биссектрисе угла Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке