ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115778
Темы:    [ Отношение, в котором биссектриса делит сторону ]
[ Теорема синусов ]
[ Теоремы Чевы и Менелая ]
Сложность: 4
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

В треугольнике ABC проведены биссектрисы AA', BB' и CC'. Пусть P – точка пересечения A'B' и CC', а Q – точка пересечения A'C' и BB'.
Докажите, что  ∠PAC = ∠QAB.


Решение

Применяя теорему синусов к треугольникам AC'Q и AA'Q, получаем (см. рис.)    



Аналогично     По теореме Чевы (см. задачу 53856) эти отношения равны, что равносильно утверждению задачи.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2007
тур
задача
Номер 15

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .