Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 11 задач
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

В какое наибольшее число цветов можно раскрасить все клетки доски размера 10×10 так, чтобы в каждой строке и в каждом столбце находились клетки не более чем пяти различных цветов?

Вниз   Решение


На клетчатую плоскость положили 2009 одинаковых квадратов, стороны которых идут по сторонам клеток. Затем отметили все клетки, которые покрыты нечётным числом квадратов. Докажите, что отмеченных клеток не меньше, чем клеток в одном квадрате.

ВверхВниз   Решение


Автор: Храмцов Д.

В клетках таблицы 10×10 расставлены числа 1, 2, 3, ..., 100 так, что сумма любых двух соседних чисел не превосходит S.
Найдите наименьшее возможное значение S. (Числа называются соседними, если они стоят в клетках, имеющих общую сторону.)

ВверхВниз   Решение


Сумма чисел a1, a2, a3, каждое из которых больше единицы, равна S, причём     для любого  i = 1, 2, 3.
Докажите, что  

ВверхВниз   Решение


Автор: Храмцов Д.

Уголком размера n×m , где m,n2 , называется фигура, получаемая из прямоугольника размера n×m клеток удалением прямоугольника размера (n-1)×(m-1) клеток. Два игрока по очереди делают ходы, заключающиеся в закрашивании в уголке произвольного ненулевого количества клеток, образующих прямоугольник или квадрат. Пропускать ход или красить одну клетку дважды нельзя. Проигрывает тот, после чьего хода все клетки уголка окажутся окрашенными. Кто из игроков победит при правильной игре?

ВверхВниз   Решение


Какое максимальное число ферзей, не бьющих друг друга, можно расставить на шахматной доске 8×8?

ВверхВниз   Решение


На бесконечной в обе стороны ленте бумаги выписаны все целые числа, каждое – ровно по одному разу.
Могло ли оказаться, что между каждыми двумя числами не стоит их среднее арифметическое?

ВверхВниз   Решение


Существуют ли такие двузначные числа  abcd,  что  ab·cd = abcd.

ВверхВниз   Решение


Автор: Храмцов Д.

Найдите наибольшее натуральное число N, для которого при произвольной расстановке различных натуральных чисел от 1 до 400 в клетках квадратной таблицы 20×20 найдутся два числа, стоящих в одной строке или одном столбце, разность которых будет не меньше N.

ВверхВниз   Решение


Дан квадратный трёхчлен  f(x) = x² + ax + b.  Уравнение  f(f(x)) = 0  имеет четыре различных действительных корня, сумма двух из которых равна  –1. Докажите, что  b ≤ – ¼.

ВверхВниз   Решение


На плоскости лежат три трубы (круговые цилиндры одного размера в обхвате 4 м). Две из них лежат параллельно и, касаясь друг друга по общей образующей, образуют над плоскостью тоннель. Третья, перпендикулярная к первым двум, вырезает в тоннеле камеру. Найдите площадь границы этой камеры.

Вверх   Решение

Задача 115784
Темы:    [ Цилиндр ]
[ Поверхность круглых тел ]
Сложность: 4+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

На плоскости лежат три трубы (круговые цилиндры одного размера в обхвате 4 м). Две из них лежат параллельно и, касаясь друг друга по общей образующей, образуют над плоскостью тоннель. Третья, перпендикулярная к первым двум, вырезает в тоннеле камеру. Найдите площадь границы этой камеры.


Решение 1

Горизонтальные сечения камеры являются прямоугольниками с периметрами, равными удвоенному диаметру трубы. Для каждого такого прямоугольника угол между его плоскостью и касательной к поверхности камеры один и тот же во всех точках. Середины сторон этих прямоугольников при перемещении сечения описывают четверти окружности трубы. Поэтому площадь поверхности камеры равна площади поверхности тетраэдра, грани которого – равные равнобедренные треугольники с основанием, равным диаметру трубы, и высотой, равной четверти её окружности.


Решение 2

Будем называть касающиеся друг друга цилиндры продольными, а перпендикулярный им – поперечным. Очевидно, что плоскость, касающаяся продольных цилиндров по общей образующей, и вертикальная плоскость, проходящая через ось поперечного цилиндра, являются плоскостями симметрии камеры и разрезают её на четыре равные части. Рассмотрим одну из таких четвертей. Её граница состоит из двух кусков: части поверхности продольного цилиндра, лежащей внутри половины поперечного, и части поверхности поперечного цилиндра, лежащей между продольным и касательной к нему вертикальной плоскостью. Линия пересечения цилиндров является эллипсом и лежит в вертикальной плоскости, при симметрии относительно которой цилиндры переходят друг в друга. Образ при этой симметрии части поверхности камеры, лежащей на продольном цилиндре, дополняет часть, лежащую на поперечном, до криволинейного прямоугольника со сторонами, равными половине диаметра и четверти окружности цилиндра. Соответственно, площадь поверхности камеры равна учетверённой площади такого прямоугольника.


Ответ

8/π м².

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2007
тур
задача
Номер 21

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .