ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 115857
Темы:    [ Формулы для площади треугольника ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 8,9,10,11
В корзину
Прислать комментарий

Условие

Пусть a, b, c – длины сторон произвольного треугольника; p – полупериметр; r – радиус вписанной окружности. Докажите неравенство


Решение

Применив неравенство Коши, получаем, что левая часть не меньше чем     (R – радиус описанной окружности, S – площадь, см. задачи 108568, 52787, 54784). Поскольку  R ≥ 2r  (см. задачу 55233), отсюда следует искомое неравенство.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2009
Класс
Класс 10
задача
Номер 10.1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .