Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Кузнечик умеет прыгать по полоске из n клеток на 8, 9 и 10 клеток в любую сторону. Будем называть натуральное число n пропрыгиваемым, если кузнечик может, начав с некоторой клетки, обойти всю полоску, побывав на каждой клетке ровно один раз. Найдите хотя бы одно  n > 50,  которое не является пропрыгиваемым.

Вниз   Решение


На сторонах AB и CD квадрата ABCD взяты точки K и M соответственно, а на диагонали AC – точка L так, что ML = KL. Пусть P – точка пересечения отрезков MK и BD. Найдите угол KPL.

ВверхВниз   Решение


На клетчатом листе бумаги было закрашено несколько клеток так, что получившаяся фигура не имела осей симметрии. Ваня закрасил ещё одну клетку. Могло ли у получившейся фигуры оказаться четыре оси симметрии?

ВверхВниз   Решение


В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.

ВверхВниз   Решение


Клетки доски m×n покрашены в два цвета. Известно, что на какую бы клетку ни поставить ладью, она будет бить больше клеток не того цвета, на котором стоит (клетка под ладьей тоже считается побитой). Докажите, что на каждой вертикали и каждой горизонтали клеток обоих цветов поровну.

ВверхВниз   Решение


В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

ВверхВниз   Решение


Существует ли возрастающая арифметическая прогрессия
  а) из 11,
  б) из 10000,
  в) из бесконечного числа натуральных чисел,
такая что последовательность сумм цифр её членов – также возрастающая арифметическая прогрессия?

ВверхВниз   Решение


Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?

ВверхВниз   Решение


Автор: Храмцов Д.

Пусть a, b и c – попарно взаимно простые натуральные числа. Найдите все возможные значения  ,  если известно, что это число целое.

ВверхВниз   Решение


Назовём натуральное число ровным, если в его записи все цифры одинаковы (например: 4, 111, 999999).
Докажите, что любое n-значное число можно представить как сумму не более чем  n + 1  ровных чисел.

ВверхВниз   Решение


Квадратный лист размером 6×6 клеток сложили и вырезали из него часть так, как показано на рисунке. Затем этот лист развернули. Нарисуйте развёрнутый лист размером 6×6 клеток и покажите на рисунке сделанные вырезы.

ВверхВниз   Решение


Назовём лабиринтом шахматную доску 8×8, где между некоторыми полями вставлены перегородки. Если ладья может обойти все поля, не перепрыгивая через перегородки, то лабиринт называется хорошим, иначе – плохим. Каких лабиринтов больше – хороших или плохих?

ВверхВниз   Решение


Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.

Вверх   Решение

Задача 115950
Темы:    [ Суммы числовых последовательностей и ряды разностей ]
[ Процессы и операции ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Двадцать детей – десять мальчиков и десять девочек – встали в ряд. Каждый мальчик сказал, сколько детей стоит справа от него, а каждая девочка – сколько детей стоит слева от неё. Докажите, что сумма чисел, названных мальчиками, равна сумме чисел, названных девочками.


Решение 1

Мальчик, стоящий на k-м месте слева назовёт число  20 – k,  поэтому сумма чисел, названных мальчиками, равна  200 – Sm,  где Sm – сумма их мест. Девочка, стоящая на n-м месте слева назовет число  n – 1,  поэтому сумма чисел, названных девочками, равна  Sd – 10,  где Sd – сумма мест девочек. Осталось проверить, что  200 – Sm = Sd – 10.  Но это действительно так, поскольку  Sm + Sd = 1 + 2 + ... + 20 = 210.


Решение 2

Поменяем местами соседних мальчика и девочку. При этом указанные суммы одновременно либо увеличатся на 1, либо уменьшатся на 1. Действуя таким образом, мы можем получить любую расстановку детей. А в каждой расстановке, где мальчики стоят симметрично девочкам относительно центра, равенство указанных сумм очевидно.

Замечания

4 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 2012/13
Номер 34
вариант
Вариант весенний тур, сложный вариант, 8-9 класс
задача
Номер 2

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .