ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!.
Докажите, что первые цифры чисел вида 22n образуют непериодическую последовательность. Докажите, что если боковые рёбра пирамиды образуют с плоскостью основания равные углы, то в основании лежит вписанный многоугольник, а высота пирамиды проходит через центр описанной окружности этого многоугольника. Дан остроугольный треугольник ABC. Точки M и N – середины сторон AB и BC соответственно, точка H – основание высоты, опущенной из вершины B. Описанные окружности треугольников AHN и CHM пересекаются в точке P (P ≠ H). Докажите, что прямая PH проходит через середину отрезка MN. Ребро куба ABCDA1B1C1D1 равно 1. Найдите радиус сферы, касающейся: а) рёбер AB , AA1 , AD и плоскости B1CD1 ; б) рёбер AB , AA1 , AD и прямой CD1 . Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру. Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный. B ряд лежат 1000 конфет. Сначала Вася съел девятую конфету слева, после чего съедал каждую седьмую конфету, двигаясь вправо. После этого Петя съел седьмую слева из оставшихся конфет, а затем съедал каждую девятую из них, также двигаясь вправо. Сколько конфет после этого осталось? В стране Далёкой провинция называется крупной, если в ней живёт более 7% жителей этой страны. Известно, что для каждой крупной провинции найдутся такие две провинции с меньшим населением , что их суммарное население больше, чем у этой крупной провинции. Какое наименьшее число провинций может быть в стране Далёкой?
Через каждую вершину четырехугольника проведена прямая,
проходящая через центр вписанной в него окружности. Три из этих прямых
обладают тем свойством, что каждая из них делит площадь
четырехугольника на две равновеликие части.
Три спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м? |
Задача 116251
УсловиеТри спортсмена стартовали одновременно из точки A и бежали по прямой в точку B каждый со своей постоянной скоростью. Добежав до точки B, каждый из них мгновенно повернул обратно и бежал с другой постоянной скоростью к финишу в точке A. Их тренер бежал рядом и все время находился в точке, сумма расстояний от которой до участников забега была наименьшей. Известно, что расстояние от A до B равно 60 м и все спортсмены финишировали одновременно. Мог ли тренер пробежать меньше 100 м? РешениеПрисвоим номера спортсменам по убыванию их скоростей на старте. Нарисуем графики их движения, откладывая время по оси абсцисс, а расстояние до точки A – по оси ординат. Пусть O – начало координат, S – точка на оси ординат сооответствующая точке B, (OS = 60 м), K, L, M – точки на графиках трёх спортсменов в момент их нахождения в точке B, T – точка на оси абсцисс, соответствующая моменту финиша, P, Q, R – точки, соответствующие моменту встречи первого и второго, второго и третьего, третьего и первого спортсменов соответственно, P', Q' и R' – проекции этих точек на ось ординат (см. рис.). Обозначим длины отрезков KL, LM и OT через a, b и t соответственно. Так как KL || OT, то треугольники KPL и TPO подобны и
Так как b < t – a, а выражение
ОтветНе мог. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке