Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

В тетраэдре ABCD плоские углы BAD и BCD – тупые. Сравните длины ребер AC и BD.

Вниз   Решение


Докажите, что стороны любого неравнобедренного треугольника можно либо все увеличить, либо все уменьшить на одну и ту же величину так, чтобы получился прямоугольный треугольник.

ВверхВниз   Решение


Докажите, что из всех треугольников данного периметра 2p равносторонний имеет наибольшую плошадь.

ВверхВниз   Решение


Рассматриваются такие квадратичные функции  f(x) = ax² + bx + c,  что  a < b  и  f(x) ≥ 0  для всех x.
Какое наименьшее значение может принимать выражение  a+b+c/b–a ?

ВверхВниз   Решение


Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

ВверхВниз   Решение


В равнобочной трапеции ABCD угол при основании AD равен arcsin . Окружность радиуса R касается основания AD , боковой стороны AB и проходит через вершину C . Она отсекает на сторонах BC и CD отрезки MC и NC соответственно. Найдите BM .

ВверхВниз   Решение


Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки, лежащие на соседних гранях, соединили отрезком.
Докажите, что сумма длин этих отрезков не меньше, чем    .

ВверхВниз   Решение


Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.

Вверх   Решение

Задача 116857
Темы:    [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Точка K – середина гипотенузы АВ прямоугольного треугольника АВС. На катетах АС и ВС выбраны точки М и N соответственно так, что угол МKN – прямой. Докажите, что из отрезков АМ, ВN и MN можно составить прямоугольный треугольник.


Решение 1

Продлим отрезок МK за точку K на его длину и получим точку Р (рис. слева). Из равенства треугольников BKP и АМK получим, что  BР = AM  и
BР || AM  (а значит,  BPBN).  В треугольнике MPN отрезок NK является высотой и медианой, следовательно, этот треугольник – равнобедренный:  NP = MN.  Таким образом, прямоугольный треугольник NBР – искомый.

           


Решение 2

Дополнив все точки и отрезки, указанные в условии, им симметричными относительно точки K (рис. справа), мы получим прямоугольник ACBD и параллелограмм MNPQ. Так как угол MKN – прямой, то MNPQ – ромб, значит  QM = MN.  Из симметрии  AQ = BN,  и треугольник AQM – искомый.

Источники и прецеденты использования

олимпиада
Название Окружная олимпиада (Москва)
год
Год 2012
класс
Класс 8
Задача
Номер 8.6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .