ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R? Докажите, что среди всех треугольников ABC с фиксированным углом Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля. Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC. Дан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам. |
Задача 116917
УсловиеДан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам. РешениеПрямая DK является симедианой треугольника ACD (см. задачу 56983). Треугольники ACD и CBD подобны. Значит, если DL и DM – их медианы, то ∠CDK = ∠ADL = ∠CDM, откуда и следует, что точка M лежит на DK. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке