Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Выпуклой фигурой F нельзя накрыть полукруг радиуса R. Может ли случиться, что двумя фигурами, равными F, можно накрыть круг радиуса R?

Вниз   Решение


Докажите, что среди всех треугольников ABC с фиксированным углом $ \alpha$ и полупериметром p наибольшую площадь имеет равнобедренный треугольник с основанием BC.

ВверхВниз   Решение


Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.

ВверхВниз   Решение


Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

ВверхВниз   Решение


Автор: Ивлев Ф.

Дан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам.

Вверх   Решение

Задача 116917
Темы:    [ Вписанные и описанные окружности ]
[ Точка Лемуана ]
[ Три точки, лежащие на одной прямой ]
[ Подобные треугольники (прочее) ]
Сложность: 4
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Автор: Ивлев Ф.

Дан треугольник ABC. Касательная в точке C к его описанной окружности пересекает прямую AB в точке D. Касательные к описанной окружности треугольника ACD в точках A и C пересекаются в точке K. Докажите, что прямая DK делит отрезок BC пополам.


Решение

Прямая DK является симедианой треугольника ACD (см. задачу 56983). Треугольники ACD и CBD подобны. Значит, если DL и DM – их медианы, то  ∠CDK = ∠ADL = ∠CDM,  откуда и следует, что точка M лежит на DK.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2012
класс
Класс 10
задача
Номер 10.7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .