Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 7 задач
Версия для печати
Убрать все задачи

Дан многочлен P(x) степени n со старшим коэффициентом, равным 1. Известно, что если x – целое число, то P(x) – целое число, кратное p
(p – натуральное число). Доказать, что n! делится на p.

Вниз   Решение


На круглой поляне радиуса R растут три круглые сосны одинакового диаметра. Центры их стволов находятся на расстоянии $ {\frac{R}{2}}$ от центра поляны в вершинах равностороннего треугольника. Два человека, выйдя одновременно из диаметрально противоположных точек поляны, обходят поляну по краю с одинаковой скоростью и в одном направлении и всё время не видят друг друга. Увидят ли друг друга три человека, если они так же будут обходить поляну, выйдя из точек, находящихся в вершинах вписанного в поляну правильного треугольника?

ВверхВниз   Решение


Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

ВверхВниз   Решение


В центре квадрата находится полицейский, а в одной из его вершин – гангстер. Полицейский может бегать по всему квадрату, а гангстер – только по его сторонам. Известно, что максимальная скорость гангстера равна 2,9 максимальной скорости полицейского. Полицейский хочет оказаться вместе с гангстером на одной стороне квадрата. Всегда ли он сможет этого добиться?

ВверхВниз   Решение


На плоскости даны три вектора a, b, c, причем $ \alpha$a + $ \beta$b + $ \gamma$c = 0. Докажите, что эти векторы аффинным преобразованием можно перевести в векторы равной длины тогда и только тогда, когда из отрезков с длинами |$ \alpha$|, |$ \beta$|, |$ \gamma$| можно составить треугольник.

ВверхВниз   Решение


Из центра правильного 25-угольника проведены векторы во все его вершины.
Как надо выбрать несколько векторов из этих 25, чтобы их сумма имела наибольшую длину?

ВверхВниз   Решение


Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.

Вверх   Решение

Задача 22000
Темы:    [ Принцип Дирихле (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8
Из корзины
Прислать комментарий

Условие

Дано 11 различных натуральных чисел, не больших 20. Докажите, что из них можно выбрать два числа, одно из которых делится на другое.


Решение

См. задачу 60299.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 5
Название Принцип Дирихле
Тема Принцип Дирихле
задача
Номер 033

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .