ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что x² + y² + 1 ≥ xy + x + y при любых x и y. Каждый из голосующих на выборах вносит в избирательный бюллетень фамилии 10 кандидатов. На избирательном участке находится 11 урн. После выборов выяснилось, что в каждой урне лежит хотя бы один бюллетень и при всяком выборе 11 бюллетеней по одному из каждой урны найдется кандидат, фамилия которого встречается в каждом из выбранных бюллетеней. Докажите, что по крайней мере в одной урне все бюллетени содержат фамилию одного и того же кандидата.
Докажите, что катет прямоугольного треугольника равен сумме радиуса вписанной окружности и радиуса вневписанной окружности, касающейся этого катета.
В прямоугольном треугольнике ABC катет AB равен 21, а катет BC равен 28. Окружность, центр O которой лежит на гипотенузе AC, касается обоих катетов. Через вершину C квадрата ABCD проведена прямая, пересекающая диагональ BD в точке K, а серединный перпендикуляр к стороне AB – в точке M (M между C и K). Найдите ∠DCK, если ∠AKB = ∠AMB. За круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики. |
Задача 30309
УсловиеЗа круглым столом сидят 25 мальчиков и 25 девочек. Докажите, что у кого-то из сидящих за столом оба соседа – мальчики. Решение 1Уберём из-за стола каждого второго и посадим их за другой стол в том же порядке. За каждым столом теперь по 25 человек, поэтому мальчиков и девочек не поровну – есть стол, где мальчиков больше, чем девочек. За этим столом два мальчика должны сидеть рядом (если рядом с каждым мальчиком сидит две девочки, то девочек не меньше, чем мальчиков). Но за исходным столом между этими мальчиками кто-то сидел. Решение 2Предположим, что это не так. Тогда нигде рядом не сидят больше двух мальчиков и рядом с девочкой всегда сидит хотя бы одна девочка. Разобьем всех сидящих за столом на группы рядом сидящих мальчиков и группы рядом сидящих девочек. Эти группы чередуются, поэтому количество групп мальчиков и групп девочек одинаково. Как мы только что заметили, в каждой группе мальчиков находится не более двух ребят, а в каждой группе девочек – не менее двух. Поэтому все эти группы состоят ровно из двух человек (иначе мальчиков меньше, чем девочек). Но тогда этих групп 25 – нечётное число. Противоречие. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке