Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите, что любой остроугольный треугольник площади 1 можно поместить в прямоугольный треугольник площади $ \sqrt{3}$.

Вниз   Решение


Доказать, что существует бесконечно много чисел, не представимых в виде суммы трёх кубов.

ВверхВниз   Решение


Докажите справедливость формулы  

ВверхВниз   Решение


На сторонах правильного треугольника ABC как на основаниях внутренним образом построены равнобедренные треугольники  A1BC, AB1C и ABC1 с углами α, β и γ при основаниях, причём  α + β + γ = 60°.  Прямые BC1 и B1C пересекаются в точке A2, AC1 и A1C – в точке B2, AB1 и A1B – в точке C2. Докажите, что углы треугольника A2B2C2 равны 3α, 3β и 3γ.

ВверхВниз   Решение


Окружность радиуса ua вписана в угол A треугольника ABC, окружность радиуса ub вписана в угол B; эти окружности касаются друг друга внешним образом. Докажите, что радиус описанной окружности треугольника со сторонами     равен    где p – полупериметр треугольника ABC.

ВверхВниз   Решение


Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7.

ВверхВниз   Решение


В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами.

ВверхВниз   Решение


Докажите, что для любого натурального a найдётся такое натуральное n, что все числа  n + 1,  nn + 1,  nnn + 1,  ...  делятся на a.

ВверхВниз   Решение


Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.

Вверх   Решение

Задача 30599
Темы:    [ Деление с остатком ]
[ Разложение на множители ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Докажите, что среди 51 целого числа найдутся два, квадраты которых дают одинаковые остатки при делении на 100.


Подсказка

Используйте тождество  x² – y² = (x – y)(x + y).


Решение

Разобьём все остатки от деления на 100 на 50 групп:  {1, 99},  {2, 98},  ...,  {49, 51},  {0, 50}.  Поскольку чисел больше 50, найдутся два числа x и y, остатки которых попадут в одну группу. Если это – одна из первых 49 групп, то либо  x – y,  либо  x + y  делится на 100. Если это последняя группа, то и  x – y  и
x + y  кратны 10. В любом случае  x² – y²  делится на 100.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 10
Название Делимость-2
Тема Теория чисел. Делимость
задача
Номер 013

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .