Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

Несколько человек стоят прямоугольником. В каждой шеренге выбрали самого нижнего, в каждом ряду самого высокого. Кто выше: самый низкий из высоких или самый высокий из низких?

Вниз   Решение


Можно ли число 1/10 представить в виде произведения десяти положительных правильных дробей?

ВверхВниз   Решение


В прямоугольной таблице m строк и n столбцов  (m < n).  В некоторых клетках таблицы стоят звёздочки, так что в каждом столбце стоит хотя бы одна звёздочка. Докажите, что существует хотя бы одна такая звёздочка, что в одной строке с нею находится больше звёздочек, чем с нею в одном столбце.

ВверхВниз   Решение


В центре куба сидит жук. Доказать, что он, переползая через ребра, не сможет обойти все кубики по одному разу.

ВверхВниз   Решение


Доказать, что  776776 + 777777 + 778778  делится на 3.

Вверх   Решение

Задача 31242
Тема:    [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Доказать, что  776776 + 777777 + 778778  делится на 3.


Решение

Это неверно:  776776 + 777777 + 778778 ≡ (–1)776 + 0 + 1778 = 2 (mod 3).

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 11
Название Остатки
Тема Деление с остатком
задача
Номер 12

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .