ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата. Пусть M — центр масс n-угольника
A1...An;
M1,..., Mn — центры масс (n - 1)-угольников,
полученных из этого n-угольника выбрасыванием вершин
A1,...,
An соответственно. Докажите, что многоугольники
A1...An
и
M1...Mn гомотетичны.
Клайв прокрутил минутную стрелку, так же как в задаче 32796.) Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n. Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала? Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом — мак, а в третьем — ещё не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: "Мак", "Просо" и "Смесь". Мачеха вернулась с бала первой и нарочно поменяла местами все таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зёрнышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала? Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться? а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника. Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка. Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Для перевозки почты из почтового отделения на аэродром был выслан автомобиль "Москвич". Самолёт с почтой приземлился раньше установленного срока, и привезённая почта была отправлена в почтовое отделение на попутной грузовой машине. Через 30 минут езды грузовая машина встретила на дороге "Москвич", который принял почту и, не задерживаясь, повернул обратно. В почтовое отделение "Москвич" прибыл на 20 минут раньше чем обычно. На сколько минут раньше установленного срока приземлился самолёт? В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 5 и 6. Точка K делит сторону AC в отношении 3:1, считая от точки A, AH - высота треугольника ABC. Что больше: 2 или отношение длины BK к длине AH?
Шеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если а) n = 4; б) n = 5? |
Задача 32132
УсловиеШеренга солдат называется неправильной, если никакие три подряд стоящих солдата не стоят по росту (ни в порядке возрастания, ни в порядке убывания). Сколько неправильных шеренг можно построить из n солдат разного роста, если а) n = 4; б) n = 5? Решение Поставим между соседними солдатами "+", если правый выше левого, и "–" – в противном случае. По условию плюсы и минусы в неправильной шеренге должны чередоваться. Ясно, что количество шеренг, начинающихся с плюса, равно количеству шеренг, начинающихся с минуса. б) Найдём количество шеренг типа *+*–*+*–*. Обозначим солдат буквами A, B, C, D и E в порядке уменьшения роста. И здесь A может стоять на втором или четвёртом месте. Но эти случаи симметричны, поэтому достаточно рассмотреть только первый: *A*+*–*. При этом B может стоять на первом или четвёртом месте. Ответа) 10 шеренг; б) 32 шеренги. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке