ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольник вписан квадрат (две вершины на одной стороне и по одной на остальных). Докажите, что центр вписанной окружности треугольника лежит внутри квадрата. Пусть M — центр масс n-угольника
A1...An;
M1,..., Mn — центры масс (n - 1)-угольников,
полученных из этого n-угольника выбрасыванием вершин
A1,...,
An соответственно. Докажите, что многоугольники
A1...An
и
M1...Mn гомотетичны.
Клайв прокрутил минутную стрелку, так же как в задаче 32796.) Сумма n чисел равна нулю, а сумма их квадратов равна единице. Докажите, что среди этих чисел найдутся два, произведение которых не больше – 1/n. Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала? Мачеха, уезжая на бал, дала Золушке мешок, в котором были перемешаны мак и просо, и велела перебрать их. Когда Золушка уезжала на бал, она оставила три мешка: в одном было просо, в другом — мак, а в третьем — ещё не разобранная смесь. Чтобы не перепутать мешки, Золушка к каждому из них прикрепила по табличке: "Мак", "Просо" и "Смесь". Мачеха вернулась с бала первой и нарочно поменяла местами все таблички так, чтобы на каждом мешке оказалась неправильная надпись. Ученик Феи успел предупредить Золушку, что теперь ни одна надпись на мешках не соответствует действительности. Тогда Золушка достала только одно-единственное зёрнышко из одного мешка и, посмотрев на него, сразу догадалась, где что лежит. Как она это сделала? Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов. Могло ли это случиться? а) В треугольнике ABC проведена биссектриса BD внутреннего или внешнего угла. Докажите, что AD : DC = AB : BC. б) Докажите, что центр O вписанной окружности треугольника ABC делит биссектрису AA1 в отношении AO : OA1 = (b + c) : a, где a, b, c – длины сторон треугольника. Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка. Двое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. |
Задача 32781
УсловиеДвое лыжников шли с постоянной скоростью 6 км/ч на расстоянии 200 метров друг от друга. Потом они стали подниматься в большую горку, и скорость упала до 4 км/ч. Потом оба лыжника съехали с горки со скоростью 7 км/ч и попали в глубокий снег, где их скорость стала всего 3 км/ч. Решение 1Оба лыжника двигались по горке с одинаковыми скоростями на участках одной и той же длины, поэтому оба потратили на прохождение горки одно и то же время. Поскольку до и после горки они также двигались с одинаковыми скоростями, второй лыжник после горки отставал от первого на то же время, что и до горки. Изначально разница между лыжниками по времени составляла 200 м : 6 км/ч; после горки они двигались со скоростью 3 км/ч, значит, расстояние между ними было равно 200 м : 6 км/ч · 3 км/ч = 100 м.
Решение 2 Когда первый лыжник подошел к основанию горки, второй отставал отставал от него на 200 м. За время, которое потребовалось второму на эти Ответ100 м. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке