Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 5 задач
Версия для печати
Убрать все задачи

На доске после занятия осталась запись:

  "Вычислить  t(0) − t(π/5) + t(/5) − t(/5) + ... + t(/5) − t(/5),  где  t(x) = cos5x + *cos4x + *cos3x + *cos2x + *cosx + *".
Увидев её, студент мехмата сказал товарищу, что он может вычислить эту сумму, даже не зная значений стёртых с доски коэффициентов (вместо них в нашей записи *). Не ошибается ли он?

Вниз   Решение


Пусть a – положительный корень уравнения  x2017x – 1 = 0,  а b – положительный корень уравнения  y4034y = 3a.
  а) Сравните a и b.
  б) Найдите десятый знак после запятой числа  |a – b|.

ВверхВниз   Решение


В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.

ВверхВниз   Решение


В пространстве расположены 2n точек, никакие четыре из которых не лежат в одной плоскости. Проведены  n² + 1  отрезков с концами в этих точках. Докажите, что проведённые отрезки образуют
  а) хотя бы один треугольник;
  б) не менее n треугольников.

ВверхВниз   Решение


Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?

Вверх   Решение

Задача 32885
Темы:    [ Простые числа и их свойства ]
[ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Ваня записал несколько простых чисел, использовав ровно по одному разу все цифры от 1 до 9. Сумма этих простых чисел оказалась равной 225.
Можно ли, использовав ровно по одному разу те же цифры, записать несколько простых чисел так, чтобы их сумма оказалась меньше?


Решение

Например,  207 = 2 + 3 + 5 + 41 + 67 + 89 = 2 + 3 + 5 + 47 + 61 + 89 = 2 + 5 + 7 + 43 + 61 + 89.


Ответ

Можно.

Замечания

1. Все чётные цифры, кроме цифры 2, должны стоять в разряде десятков (иначе соответствующее число не будет простым).
Сумма будет наименьшей, если все остальные числа будут стоять в разряде единиц; можно показать, что в остальных случаях сумма будет не меньше 225.

2. Других примеров нет.

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Год 2013
Номер 76
класс
Класс 8
задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .